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Colored sequences of partitions

Set I = [0, 1] and fix α ∈ (0, 1).

Substitution rule: I 7−→ αI t α+ (1− α)I

Kakutani splitting procedure: Put π0 = I, and define πm+1 by
substituting all intervals of maximal length in πm.

xm,rm,bm the set of left endpoints of all,red,blue intervals in πm.
1. Uniform distribution:

I Is the sequence xm uniformly distributed?
I Are rm and bm uniformly distributed?

2. Color frequencies:
I Does |rm|/ |xm| converge?
I Does L({x ∈ I : x is colored red in πm}) converge?
I In case both limits exist, are they necessarily the same?
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Multiscale substitution schemes

Prototiles in Rd are substituted by patterns of tiles

The Kakutani splitting procedure defines a sequence of partitions:
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Directed weighted graph model for substitution schemes

log 1log 1
1– α α

1– αα

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in

the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.

A scheme is irreducible if its graph is strongly connected.

A non-example: Two labeled copies of I, with substitution rules:

I1 7−→
3
5I2 t

3
5 + 2

5I2, I2 7−→
1
2I2 t

1
2 + 1

2I2
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Uniform distribution results

Theorem (Kakutani): For any α ∈ (0, 1), the sequence xm is
uniformly distributed.

Theorem (S.): Kakutani sequences generated by irreducible
multiscale substitution schemes are uniformly distributed.
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Splitting procedure and flow on edges
Metric paths are directed walks on edges, do not necessarily

originate or terminate at vertices.

Tiles in partition πm are modeled by metric paths of length lm.
Example: the 1

3 -Kakutani.

l1 = log 3
2 l2 = 2 log 3

2

|rm|= ]{metric paths of length lm terminating on red edge}
L({x ∈ I : x is colored red in πm}) is the probability that a metric
path of length lm terminates on the red edge, if the red edge is
assigned probability 1

3 and the blue edge probability 2
3 .
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Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in
the associated graph of lengths a, b ∈ R so that a

b /∈ Q.

Theorem (S.): Kakutani sequences of partitions generated by
irreducible incommensurable schemes have color frequencies, and
they can be calculated explicitly in terms of the substitution
scheme.

Example: The α-Kakutani scheme is incommensurable if and
only if logα

log(1−α) /∈ Q, which holds for a.e α ∈ (0, 1).

This includes the case α = 1
3 :

I lim|rm|/ |xm|

= 2
3 .

I limL({x ∈ I : x is colored red in πm}) =
1
3 log 1

3
1
3 log 1

3 + 2
3 log 2

3
.
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More examples
A commensurable example – The Rauzy fractal scheme:

Edge lengths: log τ, 2 log τ, 3 log τ , where τ = tribonacci constant.

For a.e θ Sadun’s generalized pinwheel scheme is
incommensurable:
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Multiscale substitution tilings (jointly with Yaar Solomon)

Given am incommensurable scheme and starting with a prototile T
of volume 1, the substitution flow Ft (T ) is defined by
I At t = 0 the tile T is substituted.
I As t increases, the resulting patch is inflated by et .
I Tiles are substituted as soon as they reach volume 1.

Tilings of Rd are defined as limits of {Ft(T ) : t ≥ R}.

Our study includes:
I Structural, geometrical and statistical properties of tilings:

(types and scales, repetitivity, patch frequencies, BD/BL)
I Dynamical properties of the tiling dynamical system.

(minimality, invariant measures)
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Tilings of Rd are defined as limits of {Ft(T ) : t ≥ R}.

Our study includes:
I Structural, geometrical and statistical properties of tilings:

(types and scales, repetitivity, patch frequencies, BD/BL)
I Dynamical properties of the tiling dynamical system.

(minimality, invariant measures)
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Uniform distribution follows from the Perron-Frobenius theorem.

This Kakutani sequence does not have color frequencies.
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The incommensurable case - counting paths on graphs

Let M (s) be the graph matrix function defined by

Mij (s) = e−s·l(ε1) + · · ·+ e−s·l
(
εkij

)
,

and Mij (s) = 0 if there are no such edges in G .

Theorem (Kiro, Smilansky×2): Let G be a strongly connected
incommensurable graph. There exist λ > 0 and Q ∈ Mn (R) with
positive entries, such that if ε ∈ E has initial vertex h ∈ V, the
number of metric paths of length exactly x from vertex i ∈ V to a
point on the edge ε grows as

1− e−l(ε)λ

λ
Qiheλx + o

(
eλx

)
, x →∞.

where λ is the maximal real value for which ρ (M (λ)) = 1,

Q = adj (I −M (λ))
−tr (adj (I −M (λ)) ·M ′ (λ)) .
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Poles of the Laplace transform
The proof follows The Wiener-Ikehara Theorem, originally
motivated by the Prime Number Theorem.

This requires the study of the poles of the Laplace transform of a
counting function, which in our case is given by

L{f (x)} (s) = 1− e−l(ε)s

s ·
(adj (I −M (s)))ih

det (I −M (s)) ,

and so we study the zeroes of the exponential polynomial

det (I −M (s)) .

There is a zero at s = λ ∈ R, and none to the right of Re(s) = λ.

Incommensurability implies no other zeroes on Re(s) = λ, and ∞
many zeroes in every vertical strip λ− ε < Re(s) < λ.

Information on the location of zeroes closest to Re(s) = λ can be
used to obtain upper bounds on error terms.
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Zeroes of exponential polynomial (jointly with Avner Kiro,
Alon Nishry and Aron Wennman)

In the case of graphs modeling an α-Kakutani scheme

det (I −M (s)) = 1− e−as − e−bs

with a = log 1
α and b = log 1

1−α .

Incommensurability is equivalent to

β = logα
log(1− α) /∈ Q,

and by a change of variables z = s logα, we reduce to the study of
roots of ez + eβz = 1.

The following slides show some approximations of such zeroes in
compact strips, for different values of β. At the moment these
experimentations give rise to more questions than answers...
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β = `, a Liouville number, rightmost roots (up to 30,000)
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Extending the model

Next, we now turn to the roots of

ez + eβz + eγz = 1,

which are related to graph with a vertex and three loops, or to
schemes in which I is substituted by three rescaled copy of itself.
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β = e and γ = π, all roots (up to 10,000)
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